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SUBLIMATION —CONDENSATION IN A

CYLINDRICAL ANNULAR GAP

UDC 536.422.4

P. A. Novikov, L. Ya. Lyubin,
and E. K. Snezhko

The sublimation — condensation process is studied at a pressure below the pressure at the
triple point in a narrow annular channel in order to assess the possibility of maintaining a
constant temperature of an object in a vacuum under conditions of heating at a single side,

An extremely high effective thermal conductivity can be achieved by using heat-transfer equipment
(heat pipes) in which the heat transfer occurs as a result of a double phase transition of the heat carrier,
with this carrier being continuously returned to the liquid phase through a wick in the evaporation zone [1].
The efficiency of the device can be raised at a pressure of the vapor (sublimate) below the pressure at the
triple point, if there is wick-free transport of the solid condensate to the sublimation zone. An obvious
way to achieve this situation is fo use a heat-transfer ring rotating around its symmetry axis. This ring
would be a slotted channel, filled with the sublimating heat carrier, between two thin, coaxial, cylindri-

cal or conical shells.

£)%

o o Y
/ / <

E, / : 8min ’
//

‘// Ie

Fig. 1. Distribution of the solid condensate in a
cylindrical annular gap.
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Fig. 2. Calculated curves for the thermal balancing of a eylin-
drical ring with r,=2 m for E =350, 1400, 5600, and 22,400
W/m? (curves 1-4, respectively). a) Effects of the rotation
velocity of the ring on the distribution of solid condensate; b)
dependence of the accuracy of the thermal balancing on the
width of the cylindrical annular gap, 2h. Here w, - 10* is ex-
pressed in sec™, A5 - 10* is expressed in m, AT is expressed
in °K, and h - 10° is expressed in m,

Such arrangements can be used to effectively level the temperature field in appropriate thin shells
at low angular velocities w of an object subjected to heating from a single side in vacuum.

The case of most practical interest is that of cylindrical and conical heat-transfer rings, since in
spherical shells the solid condensate eventually accumulates near the rotation axis,

In the present paper we restrict the analysis to the case of a temperature-balancing ring (Fig. 1)
consisting of two coaxial cylindrical shells. The narrow gap between these shells (2h «rj) is originally
purified of noncondensing gases and filled with a certain amount of the working medium (eat carrier),
whose triple-point temperature is above the temperatures maintained in the thermostat. To avoid end
effects, we assume that both bottoms are ideal thermal insulators, The object is in a vacuum and sub-
jected to heating from a single side by a radiative heat flux in the direction perpendicular to the rotation
axis, Furthermore, the outer shell radiates energy into free space in accordance with the Stefan — Boltz-
mann law, Accordingly, the resultant heat flux across the outer shell is

—eoTY for (p<'12t-‘ai1d cp>—%L,

q ==
— AEcosp— eoT:, for g— <@ << ég—- @

If radiative heat transfer occurs between the elements of the inner shell and the inner side, the specific
heat flux across the corresponding shell is

qy =8&4" — 8107‘;‘- {2)

We assume that the length of the cylinder, 1, is much larger than its radius, r,. Accordingly, in
the approximation of infinite cylindrical shells it is simple to show that the specific heat flux q° to a sur-
face which radiates diffusely (according to the cosine law) is independent of the angular coordinate (dq°/
dp=0; the end effect is neglected):

2n

o __ g 4
7= "3 jo‘ Tw, do- )

The inner surface of the outer wall of the annular channel is coated with a layer of solid condensate, whose
profile is given below. The rate of phase transitions (sublimation — condensation) is given by

J _9ta @ (c'p'd + cp,0,) dT,,
m L L dp @)
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We neglect the heat flow along the shells themselves, The gap is assumed to be relatively narrow: 2h/r«
1. Then the properties of the sublimate flowing in the gap can be characterized by the potential ¥, intro-
duced in [2] or [3], if we wish to take into account the effect on this flow of the thermal inhomogeneities
across the slotted channel, and if we wish to take into account the temperature dependence ofthe coefficients
w4 and x. Inthe present case it is not very important to take these factors into account, since by its very
nature the rotating ring is a thermostat, which should hold the thermal inhomogeneities along the surface
to a low level, so that there will be small temperature drops across the gap also, Since the external heat
supply is assumed independent of the axial coordinate, the gasdynamic parameters of the sublimate flowing
in the gap also have this property.

Accordingly, following [2], we can write

&Y priJ,, ¢
T T Y= ond,
p - 2—8 378, 9 p* dInF(p)
@ (p) = + -+t B -,
P =2 "% wRF 1R i (5
where
Fip) = RT,/L

1—(RT,/L)In(plp,)’

In Eq. (5) we have neglected the additional sublimate velocity due to rotation of the thermostat, since an
angular velocity w«V/r, [see (18)] is sufficient for effective operation of this thermostat,

The temperatures T, and Ty, are related to the temperature T(p) of the phase-transition surface
(we neglect the phase resistance [2]; l.e., we assume that this latter femperature is related by the
Clausius — Clapeyron equation to the pressure p of the sublimate moving over the surface) by the following
equations: v
Ty —T(p) =qRy; T, —T (p) = §:Reu,,
8 & 6 1 '
Ry=—¥= 4 —7= Re, = ﬂ:’* + 3 T(p) =T.F (p)- (6)

Ay @+ M2k’
We assume §' «2h, The thermal resistances need not be evaluated highly accurately here, since all the
temperatures which appear in these equations are approximately the same.

Below we assume that the thermal resistance of the layer of solid condensate, §'/A', is negligibly
small; i.e., we assume Ry, =8w/Ay.

By introducing the potential ¥ we can describe the flow in the gap by differential eqnation (5), whose
right side contains a small nonlinearity due to the dependence of (g +q;) on the sublimate temperature,
Accordingly, we should expand T4w and 'T‘iv in Taylor series around some average value of the fourth
power of the sublimate temperature, T}‘, or this purpose we introduce t(p)=T(p) — Tp; t(p) «Ty. Then
using only the first two terms from (3) and (6), we find

2

3 1 '
¢ =0 [Tﬁ + 237;0 St(P) a'fp]- (7)
0
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Analogously, from (1), (2), and (6) we find
AEf (g) —eToo [1 + 4 ()T

1+ 4eTH R, ’ ®
0 for (p<—n» and @ > L :
I JET LI N 2 iy
1= . !
1+ 48,067} R, —cosp for %<€P< ‘7“‘

Since for the pressure drops Ap in the annular gap of the thermostat we have

Ap dT <1
To dp N 3

we can write

(dT (dp),

t(P)=W(‘F‘—Wo)=

RT} _
@y Yo ©)

We show below that for a working medium which has a high heat of sublimation (water), and at angular velo-
cities sufficient for effective operation of the thermostat, the second term on the right side of (4) is negli-
gibly small, Then using (7)-(9) we can rewrite Eq. (5) as

&Y

—— —N,¥ = D —MHAEf (¢),

do? (1 O)

where

H=(1+4e0T3R,) Y Hy = (1 + 4e,0T5 Ru) ™S

o
GURTEWO ; Ny=(eH g H)N;

3ur
= s N = cos—a—
M L@ (p)
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m

D = MeHoT§ — N [&,H, | (¥ —¥))do —2(eH +&H) ¥, |-
[}

Since w« V/ry, we can assume that the flow is symmefric about the ¢ =0 axis. Then the potential
¥ must satisfy the boundary conditions

dlp‘ s
— =0 f =0 and ¢ ==
- or @ and ¢ =x 1)

A solution of Eq. (10) satisfying the first boundary condition is
9
=/ T+ | o—MrAE @15 1V (0 — ) .
b3 h .

For p<n/2
__MHAE (/N o)—1
T U+ NYVN, 2sh(V Ny )

while for /2 < ¢ < 371/2

Y ¥, = MHASE [ ch [V_IX‘ = —,.—EE»— L cos q)} .
1+ N, 2V'N, sh(3' N, n/2) (12)
By virtue of (9) the maximum temperature drop of the sublimation surface is
| 3uRTors AE
T Tty — T =t n l == 8 .
() —To =tlp(m) 1N, 2L ®(p,) 1|+ 4eoTSR, a3)
ot

From the condition for steady-state thermal conditions of the ring, J qdp =0, and using (9) and (12), we

find a transcendental equation for the unknown temperature Tj=T(0):
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h z N,
- AE 2(1 + Nyps (V 2) —V'N,

ot eH 4+ &H, 2ac(l -+ Ny sh (VTV:—-;—) e (14)

Neglecting the second term in (4), as in the derivation of (10), we write an equation for the steady-state
profile of the layer of solid condensate:
a8 9+

(0] = - ’
de Ly’

we thus have

5=+ o eaThe — A0~ 5 [t 2~}
: olp

2(1+N) |gH,+eH = (15)

where
0 for,e <—’21,;

f (@) = Cx
1 —sing ’forf/?<q> <m

sh('’ N, o)—V N, ¢
sh(Y'N, n/2)

2[1 + Ny(l —sing)l sh (VWI g) —sh N, n— =V N, 0

.sh(VFl—;‘—)

. z":, n
for p<—;
B e 2

fi(®) =

for ~2,5 <g<nm.

By virtue of (13) we have _ |

N 401'?,

—— —T©
Ak (1+4ae7‘3 R,)AT, where AT =T =T () —T(0).

Below we will see that the temperature T;=273°K is reached at Ag~0,13 (E =1392 W/m?, £=0.18), Ac-
cordingly, for water near the triple point we have

N

+ N

=0, 0258A’1"(1 + 4e0TS R,),

where N;<2N, since H<1 and Hi=1.

If the thermal resistance of the outer shell, Ry,, is small in comparison with the effective resistance
(4eoTS ) corresponding to radiation into space, we have N/(1+N;)~0,0258AT; i.e., for AT<1%K we have
N£0.0258 (N;20.0516), and for AT >0.1°K we have N £0,00258 (N; £0.00516).

Neglecting quantities on the order of N2, we find instead of (14) and (15) the following:

s/ AE N a®
Ty= ———ﬂ’w [I—Tt»:zﬁ'(l--———24 )}, (16)

6 =t (S —h@—N[8 L+ e L]} )

where

n? & H n?
— g% e 1741 1 . :
B 8H(1‘ o )—)— 2 ( -+ 12)

3

1 o %
— 2 for0<o< —;

=] > ", e

2@ =1 s . =97 gy T
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n[l? - w(l—sing) 3 } 2
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Since we have N «1 if the temperature equalization i4s sufficiently effective, we can substitute into these
latter expressions the value of N calculated for T;=VAgE/neo,

The extremal thicknesses of the layer of solid condensate are found from the condition d5'/dp=0.
If we neglect quantities on the order of N, we find that in this case the maximum and minimum of
&' correspond to the angles
¢ = arccos (— 1/n); @ = 2x — arccos (— 1/x);

HAE HAE

6max = 60 -+ 0.545 (I)Lp, 3 6mm == 60-— O 545 &)Lp

Accordingly, if the thickness §' is to be smaller than ¢ and larger than §5j everywhere, the thermo-
stat must rotate at an angular velocity

, HAE
0> e, I.Ogm. (18)
As an illustration we consider an annular thermostat (Fig. 1) rotating about an axis perpendicular

to the flux of solar radiation (E =1392 W/m?), with Ag=0,13, £=0,18, Ry =0, and Ty~ (1 - 0.286N) 273°K.

If the working medium (heat carrier) is water [L.=3.06 - - 108 J/kg, R= 461 36 mz/(sec -deg K), and 4 =0.81 .
1075 N - sec/m?], then with r;=2 m the gap height 2h must be at least 0.004 m in order to achieve precise
thermal equalization AT =T(r) < T(0) =1°K (curve 2 in Fig, 2b); to achieve AT <0.1°K we would need 2h=
0.009 m, As the heat flux density E and the radius r, are increased at small values of h, the maximum
temperature drop at the sublimation surface increases rapidly.

For this thermostat, whose axis is in a horizontal plane, the earth's gravitation will produce a tor-
que due to the nonuniformity of the distribution of the layer of solid condensate with respect to the angle ¢.
If this torque is larger than the moment of the static friction in the bearings, the thermostat will begin to
rotate. The torque is

2

My = p'grol | & sin (¢ — @) dop.
- [}

If the friction moment is My, =const (dry friction in the bearings), by substituting (17) into this latter equa-
tion and neglecting quantities on the order of N, we find from the condition My, = Mp,. the angular velocity
of thé thermostat (—n7/2< ¢y < 7/2)

ngrb U1AE cos g,

0= My (19)
In the case of a linear function Mg =Kw (viscous friction in the bearings) we have

/nrleAEcosw_
o=/ S 20)

- The minimum necessary angular velocities calculated from Eq (18) for R, =0 ({=1) are shown by
curves 1-3 in Fig. 2a. Accordingly, with E =1392 W/m? and 0y = 81=0.05, 0, 10 and 1.00 mm, a single
revolution of the thermostat should be completed in time intervals no longer than 1,35, 2.70, and 27 h,
respectively.

A model thermostat has been developed for an experimental test, It is of light construction, con-
sisting of an outer ring (0.2 m in diameter, 6 =0.003 m, and 7=0.07 m) and an inner (Plexiglas) ring, which
together form an annular insulated gap of width 0.001 m. This gap communicates with three apertures at
the axis by means of six hollow "needles” (thin-walled tubes 0,002 m in diameter, made of stainless steel).
The last of these needles is mounted on ruby jewel bearings, and the entire assembled drum Is mounted on
type VLTK-500 scales in a pressure chamber held at a constant temperature between a cooled nitrogen
shield and a flat electric heater, mounted in the pressure chamber at an angle of ¢, =83° (45°). All the
surfaces of the ring held at the constant temperature; the nitrogen shield, and the electric heater which
face each other are coated with a thin layer of lamp black. The ring can be easily cranked with an un-~
balanced 0.001 kg at a lever arm of ry=0.1 m. After a careful static balancing of the ring in its annular
gap, degassed doubly-distilled water is supplied to the slotted gap through the hollow needles; the gases
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which have not condensed are evacuated from the pressure chamber, and a directed heat flux of the speci~
fied density is produced from a single-sided radiative heat source, After the final distribution of the solid
condensate in the gap is produced, with the desired operating conditions of this gap as a thermostat es-
tablished, we measure the constant rotation velocity of the ring. Figure 3 shows data obtained in these
experiments along with those calculated from Eq. (19). Since the discrepancy does not exceed 200, we can
assume that the raw data used for the analytic theory are valid. It should be noted that when the ring be-~
gins to operate, and while uncondensed gases are still present in the gap, the condensation in a solid state
occurs in the form of isolated crystals and complexes of such crystals., Later, as the residual gases are
displaced from the gap by the pure water vapor (the sublimate), a more continuous layer of the solid con-
densate (ice) forms on the inner side of the Dural ring. The loss of sublimate mass from the gap is con-
tinuously measured and is taken into account in the heat- and mass-balance equations.

In conclusion, we evaluate the ratio of the second term on the right side of (4) to the first term, which
is a measure of the heat supplied to the phase-transition surface. Using (6), (8), (9), (12), and (18), we
find (@ ~wp):

ac'p'dTide & RTopri HAE
qg+qs L3p® (py) (6 — &) °

TFor water with 5} +6]=5), To=273°K, r=2m, and 2h=0,004; 0,01, and 0,02 m we find for y=10"3;6.,4+1075
and 8 - 107%, respectively.

(21)

Accordingly, for practical calculations of heat~transfer rings with a heat carrier with a high heat of
sublimation, the assumption we have used here is completely justified.

NOTATION

Jm. sublimation rate; q, qi, q°, heat flux densities across the outer shell, the inner shell, and the
inner surface of the ring, respectively; E, intensity of the parallel beam of shortwave radiation; Ag, ¢,
€js absorption coefficient for the shortwave radiation and emissivities of the outer and inner surfaces of
the ring; o, Stefan —Boltzmann constant; Ty, TW1, temperatures of the outer and inner ring surfaces; ¢,
angular coordinate; L, latent heat of sublimation; c', o', §', A', specific heat, density, thickness, and
thermal conductivity of the solid condensate; T, p, p, u. A, temperature, pressure, density, dynamic
viscosity coefficient, and thermal conductivity of the sublimate; p«, Tx, parameters of the triple point;
6. coefficient of diffuse Maxwell reflection; rj, 2h, I, radius of the mean surface and height and length of
the generatrix of the annular cylindrical channel; w, angular velocity of ring; V, typical sublimate velo-
city; R, gas constant of sublimate; 0w+ Awlw,, Awy),thickness and thermal conductivity of the outer (in-
ner) shell; «., ¥, radiative heat-transfer coeiificient and stream potential of the low-density gas in the
slotted channel; T,=T(0); t(p) =T(p) - Ty.
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